$3.74 \AA$ from H18A. This distance was only slightly less than that from three other H atoms in other molecules; furthermore, it was only $0.80 \AA$ from an equivalent of itself.

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Blessing, 1995; Sheldrick, 1996); program(s) used to solve structures: SHELXTL/PC (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXL97.

We are indebted to the GenCorp Foundation for partial support of this research. The X-ray equipment was purchased with assistance from an instrumental grant from the National Science Foundation (CHE8206423) and a grant from the National Institutes of Health (RR-06462).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1019). Services for accessing these data are described at the back of the journal.

References

Alyea, E. C., Ferguson, G., Malito, J. \& Ruhl, B. L. (1985). Inorg. Chem. 24, 3719-3720.
Barron, P. F., Dyason, J. C., Engelhardt, L. M., Healy, P. C. \& White, A. H. (1984). Inorg. Chem. 23, 3766-3769.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Churchill, M. R. \& DeBoer, B. G. (1975). Inorg. Chem. 14, 25022507.

Churchill, M. R., DeBoer, B. G. \& Donovan, D. J. (1975). Inorg. Chem. 14, 617-623.
Churchill, M. R., DeBoer, B. G. \& Mendak, S. J. (1975). Inorg. Chem. 14, 2041-2047.
Churchill, M. R., Donahue, J. \& Rotella, F. J. (1976). Inorg. Chem. 15, 2752-2758.
Churchill, M. R. \& Kalra, K. L. (1974a). Inorg. Chem. 13, 1065-1071.
Churchill, M. R. \& Kalra, K. L. (1974b). Inorg. Chem. 13, 1427-1434.
Churchill, M. R. \& Kalra, K. L. (1974c). Inorg. Chem. 13, 1899-1904.
Churchill, M. R. \& Rotella, F. J. (1977). Inorg. Chem. 16, 3267-3273.
Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A., Raston, C. L. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 831-838.
Goel, R. G. \& Beauchamp, A. L. (1983). Inorg. Chem. 22, 395-400.
Nishizawa, Y. (1961). Bull. Chem. Soc. Jpn, 34, 1170-1178.
Pike, R. D., Starnes, W. H. Jr, Jeng, J. P., Bryant, W. S., Kourtesis, P., Adams, C. W., Bunge, S. D., Kang, Y. M., Kim, A. S., Kim, J. H., Macko, J. A. \& O'Brien, C. P. (1997). Macromolecules, 30, 6957-6965.
Sheldrick, G. M. (1990). SHELXTLPC. An Integrated System for Data Collection. Processing, Structure Solution and Refinement. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Teo, B.-K. \& Calabrese, J. C. (1976a). J. Chem. Soc. Chem. Commun. pp. 185-186.
Teo, B.-K. \& Calabrese, J. C. (1976b). Inorg. Chem. 15, 2467-2474.
Teo, B.-K. \& Calabrese, J. C. (1976c). Inorg. Chem. 15, 2474-2486.

Acta Cryst. (1999). C55, 165-167

μ-[1,1'-(1,2-Ethanediyl)bis(1H-1,2,4-triazole)]- $N^{4}: N^{4}$-bis $\{$ bis[1,1,1-trifluoro-3-(2-thenoyl)acetonato-O, $\left.O^{\prime}\right]$ copper(II) \}

Baolong Li, ${ }^{a}$ Jianzhong Zou, ${ }^{b}$ Chunying Duan, ${ }^{c}$ Yongiang Liu, ${ }^{c}$ Xianwen Wei ${ }^{c}$ and Zheng Xu ${ }^{c}$
${ }^{a}$ Department of Chemistry, Suzhou University, Suzhou 215000, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210008, People's Republic of China, and ${ }^{\text {c }}$ Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: ccinu@netra.nju.edu.cn

(Received 6 April 1998; accepted 15 September 1998)

Abstract

The crystal structure determination of the title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{6}\right)\right]$ or $\left[\mathrm{Cu}(\mathrm{TTA})_{2}\right]_{2}$ btrz, where TTA is 1,1,1-trifluoro-3-(2-thenoyl)acetone and btrz is μ-[1, 1^{\prime}-(1,2-ethanediyl)bis(1 H -1,2,4-triazole) $]$, shows that the btrz ligand links two $\mathrm{Cu}^{\mathrm{II}}$ ions, forming a binuclear complex. Each Cu atom is in a distorted squarepyramidal coordination environment.

Comment

In the search for molecular-based materials with functions of catalysis, magnetism and clathration, polynuclear coordination complexes have recently been widely studied (Makoto et al., 1994). Although many rigid bridging ligands, such as $4,4^{\prime}$-bipyridine (Fujita et al., 1994), trans-1,2-bis(2-pyridyl)ethylene (Kitagawa et al., 1991) and metalloporphyrins (Abrahams et al., 1991), have been employed to build up these materials, relatively few flexible ligands have been exploited for this purpose. We report here the preparation and crystal structure of the binuclear copper(II) complex $\left[\mathrm{Cu}(\mathrm{TTA})_{2}\right]_{2}$ btrz, (I), where TTA is $1,1,1$-trifluoro-3-(2-thenoyl)acetone and btrz is μ-[1,1'-(1,2-ethanediyl)bis($1 \mathrm{H}-1,2,4$-triazole)]. In (I), the flexible btrz ligand (Torres et al., 1988) links two $\mathrm{Cu}^{\text {II }}$ ions.

(I)

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (i) $-1-x, 2-y, 1-z$.

The molecular structure of (I) is shown in Fig. 1. There are four potentially coordinating N atoms in the btrz ligand, but only two of them coordinate to the Cu atoms, forming a binuclear complex. The Cu atoms are in a distorted square-pyramidal environment: the basal plane is composed of four O atoms from two TTA ligands, with a mean deviation of $0.013 \AA$ from the least-squares plane, and the apical site is occupied by an N atom of the btrz ligand. The intramolecular $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{i}}$ distance is $12.473(2) \AA$, precluding any interactions between the two Cu atoms in the molecule [symmetry code: (i) $-1-x, 2-y, 1-z$]. The shortest intermolecular $\mathrm{Cul} \cdots \mathrm{Cul}(-x, 1-y, 1-z)$ distance is 4.995 (2) \AA. The $\mathrm{Cu}-\mathrm{O}$ distances [1. 936 (2)1.950 (2) \AA] are similar to those in $\mathrm{Cu}(\mathrm{TTA})_{2}$ (1.945$1.970 \AA$; Li et al., 1995). The $\mathrm{Cu}-\mathrm{N}$ bond length is 2.290 (3) \AA, which is close to that in $\left[\mathrm{Cu}(\mathrm{TTA})_{2}(\mathrm{pyz})\right]_{n}$ ($2.340 \AA$; Li et al., 1995; pyz is pyrazine). The N3-C19-C19i bond angle is $110.7(3)^{\circ}$, which is near the expected value for $\mathrm{C} s p^{3}$ atoms $\left(109.5^{\circ}\right)$. Free intramolecular rotation around the single bond between the C19 and C19 ${ }^{\text {i }}$ atoms in btrz makes it quite flexible.

Experimental

The title complex was prepared from $\mathrm{Cu}(\mathrm{TTA})_{2}$ and btrz. Ethanol solutions of btrz ($1 \mathrm{mmol}, 10 \mathrm{ml}$) and $\mathrm{Cu}(\mathrm{TTA})_{2}$ ($2 \mathrm{mmol}, 20 \mathrm{ml}$) were stirred together, and the resulting
solution was allowed to stand for two weeks at room temperature. Green crystals were obtained in 40% yield.

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{6}\right)\right]\right.$ $M_{r}=1175.95$
Triclinic
P1
$a=9.310(2) \AA$
$b=11.341$ (4) \AA
$c=11.887(3) \AA$
$\alpha=102.01$ (2) ${ }^{\circ}$
$\beta=97.05$ (2) ${ }^{\circ}$
$\gamma=104.81(2)^{\circ}$
$V=1166.2(5) \AA^{3}$
$Z=1$
$D_{x}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\omega / 2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.612, T_{\text {max }}=0.650$ 4885 measured reflections 4065 independent reflections 3307 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=4.94-15.32^{\circ}$
$\mu=1.195 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.43 \times 0.38 \times 0.36 \mathrm{~mm}$
Green
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25^{\circ}$
$h=-1 \rightarrow 11$
$k=-13 \rightarrow 12$
$l=-14 \rightarrow 14$
3 standard reflections every 97 reflections intensity decay: 3.42%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.123$
$S=1.013$
4061 reflections
373 parameters
H atoms riding

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.08 P)^{2}\right. \\
& +0.13 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$

$$
\Delta \rho_{\max }=0.290 \mathrm{e}_{\AA_{\circ}^{-3}}^{-3}
$$

$$
\Delta \rho_{\max }=0.20 .458 \mathrm{e}^{-3}
$$

Extinction correction: SHELXTL (Siemens, 1995)

Extinction coefficient: 0.0011 (11)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$

$\mathrm{Cul}-\mathrm{O} 4$	1.936 (2)	$\mathrm{Cu} 1-\mathrm{Ni}$	2.290 (3)
$\mathrm{Cul}-\mathrm{O} 2$	1.941 (2)	N3-C19	1.454 (4)
$\mathrm{Cul}-\mathrm{O} 1$	1.943 (2)	C19-C19 ${ }^{\text {i }}$	1.486 (7)
$\mathrm{Cul}-\mathrm{O} 3$	1.950 (2)		
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O} 2$	84.24 (9)	O4- $\mathrm{CuI}-\mathrm{Nl}$	89.88 (10)
O4- $\mathrm{Cul}-\mathrm{O} 1$	170.40 (9)	$\mathrm{O} 2-\mathrm{Cul}-\mathrm{N} 1$	91.17 (10)
$\mathrm{O} 2-\mathrm{Cul}-\mathrm{O} 1$	92.39 (9)	$\mathrm{Ol}-\mathrm{Cul}-\mathrm{N} 1$	99.19 (10)
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O} 3$	92.29 (9)	$\mathrm{O} 3-\mathrm{CuI}-\mathrm{N} 1$	96.24 (10)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 3$	171.81 (9)	N3-C19-C19	110.7 (3)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$	89.84 (9)		
Symmetry code: (i) $-1-x, 2-y, 1-z$.			

The F atoms of the two CF_{3} groups are disordered. The siteoccupancy factors were fixed at 0.5 for each of the F atoms. All C-F distances were constrained to be equal, with an s.u. of $0.01 \AA$, and the F-F distances were also constrained. These constrained $\mathrm{C}-\mathrm{F}$ and $\mathrm{F}-\mathrm{F}$ distances were refined as free variables. The data were corrected for Lorentz and polarization effects during data reduction using XSCANS (Siemens, 1994). The structure was solved by direct methods and refined on F^{2} using full-matrix least-squares methods. All non-H atoms were refined anisotropically. H atoms were placed in calculated positions (C-H $0.96 \AA$), assigned fixed isotropic displacement parameters at 1.2 times the equivalent $U_{\text {iso }}$ of the atoms to which they are attached (1.5 times for methyl groups) and allowed to ride on their respective parent atoms. The contributions of these atoms were included in the structurefactor calculations.

Data collection: XSCANS. Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL (Siemens, 1995). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

This work was supported by the National Nature Science Foundation of China.

[^0]
References

Abrahams, B. F., Hoskins, B. F. \& Robson, R. (1991). J. Am. Chem. Soc. 113, 3606-3609.
Fujita, M., Kwon, Y. J., Washizu, S. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1153.
Kitagawa, S., Matsuyama, S., Munakata, M. \& Emori, T. (1991). J. Chem. Soc. Dalton Trans. pp. 2869-2873.

Li, M. X., Xu, Z., You, X. Z., Chen, C. G. \& Chen, J. (1995). Acta Chim. Sin. 53, 847-854.
Makoto, F., Yoon, J. K., Mayumi, M. \& Katsuyuki, O. (1994). J. Chem. Soc. Chem. Commun. pp. 1977-1978.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Siemens (1994). XSCANS. X-ray Single-Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SHELXTL. Program Library for Structure Solution and Molecular Graphics. Release 5.03, PC Version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Torres, J., Lavandera, J. L., Cabildo, P., Claramunt, R. M. \& Elguero, J. (1988). J. Heterocycl. Chem. 25, 771-787.

Acta Cryst. (1999). C55, 167-169

cis-Bis(2-amino-1,3-benzothiazole- N^{3})bis-(formato-O, \boldsymbol{O}^{\prime}) copper(II)

Leslaw Sieroń and Maria Bukowska-Strzyżewska
Institute of General \& Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland. E-mail: mbs@ck-sg.p.lodz.pl
(Received 20 July 1998; accepted 14 September 1998)

Abstract

The title complex, cis-bis(2-amino-1,3-benzothiazoleN^{3})bis(formato- $\left.O, O^{\prime}\right)$ copper(II), $\left[\mathrm{Cu}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{~S}\right)_{2}$], displays C_{2} symmetry with the Cu atom adopting a distorted octahedral $(4+2)$ coordination. The four closest donor atoms are two N atoms of 2-aminobenzothiazole and two O atoms of the carboxylate groups. They form a distorted square-planar arrangement, with $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ distances of 1.991 (2) and 1.993 (2) \AA, respectively. Two longer out-of-plane $\mathrm{Cu}-\mathrm{O}$ bonds [2.538 (2) \AA] from the remaining O atoms of the formate groups complete the strongly distorted square-bipyramidal coordination of the Cu atom. The H atoms of each amino group of the 2-aminobenzothiazole molecules form intra- and intermolecular hydrogen bonds with O atoms from the carboxylate groups. Intermolecular S \cdots S secondary bonding of 3.502 (2) \AA is observed between neighbouring chains of molecules connected by hydrogen bonds.

Comment

Although expected to have important biological activity (Macíček et al., 1987; Armstrong et al., 1992), the structures of 2-aminobenzothiazole complexes have not been intensively investigated. A search of the Cambridge Structural Database (Allen et al., 1979) did not reveal any information on 2-amino-

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1029). Services for accessing these data are described at the back of the journal.

